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Description of Progress: 

A Learned Pattern Tree for a Toy Problem 

To study the learning of pattern trees with neural nets, an artificial problem 
was constructed, in which the objects to be found and some potential false positives 
each have component patterns. To make the problem non-trivial, each positive has 
two component patterns, one each of two types, while each potential false positive 
has two components, both of the same type. Thus the pattern tree must detect both 
types of components for an object to be a positive. If only one type is detected, about 
half of the potential false-positives will be screened out . The positive and potential 
false-positives are 18-by-ll pixel rectangles with a value of 128, on a background 
with a value of 64. The component patterns are three-by-three x and + patterns 
whose pixels have the value 192 (Fig. 1). 

FIGURE 1.  Examples of Positives and Potential False Positives. Each positive has both an "x" and a 
"+" pattern. The upper two rectangles are positive objects, while the lower two are negatives. 

A background of noise is added to make identification from residual features 
at low resolution difficult. The noise is Gaussian white noise, added to the zeroth, 
first, and second levels of a Laplacian pyramid, from which a full-resolution noise 
image is constructed in the usual way. This gives significant noise at the pyramid 
levels which will be used in the pattern tree. 

The objects, positive and potential false-positive, are arranged in a ten-by- 
twenty array, with one-hundred positives in the upper half of the image and one 
hundred negatives in the lower half. The horizontal and vertical spacings between 
the objects are twice their width and height, respectively, and they are spaced this far 
from the borders of the image, as well (Fig. 2). 

A three-level Gaussian pyramid of the training image was made, and each 
neural net received as input a five-by-five window of pixels from the appropriate 
pyramid level. The training objective function is a sum over the positive "blobs" of 
the minimum of the cross-entropy errors at the positions in the blob, plus a sum 
over negative points of the cross-entropy error at those points. A weight-decay term 
was added, and roughly optimized over the regularization constant. 
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FIGURE 2. Second Level of Gaussian Pyramid of Training Image. 

We call those networks which were trained with inputs from the image 
"component" networks, and those networks with inputs from the component 
networks "integration" networks. We further refer to them by the pyramid level at 
which each is used to search, level 0 being the full-size image and level 2 having 
one-quarter of the linear extent of the full-size image. 

The level 2 component networks were trained on points from the entire 
image. Curiously, the nets did not learn to simply detect bright pixels, but 
something else which really distinguishes between the positives and negatives, 
although very poorly. On the test image, the best net can detect all 100 positives and 
miss two of the 100 negative rectangles, if the threshold is carefully adjusted. The 
nets respond only at a point (or two), apparently near the edge of each rectangle, 
possibly the corner. The exact position where a network goes high is not always on 
the feature being detected, which is allowed by the extended input window and the 
objective function. In any case, the position at which a network's output goes high is 
at a fixed offset from the feature. A net with a single hidden unit was optimal, but 
not much better than no hidden units. 
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The level 1 component net was trained on regions identified by the level 2 
net. Since the level 2 net typically only went high at a pixel for each object, the level 
1 net was trained in a rectangle around each such pixel, with the rectangle having a 
size and offset so it would cover the typical object. This seems reasonable for 
training on real objects, since we will know the regions of real objects also. The level 
1 nets came out pretty much the same as level 2. The optimal net had two hidden 
layers, each with a single unit. 

Since the level-1 net didn't do any better than the level-2 net, the level-0 net 
was trained in the same regions as the level-1 net, except of course at higher 
resolution. Twenty random starts of nets with no hidden layers resulted in one 
network which responded to the x patterns, and two which responded to the + 
patterns. The other seventeen networks all responded to corners of the object 
rectangles, and so were incapable of distinguishing positives from false positives. 
Although one of the + nets and the x net had lower than average errors, the other + 
net had a higher than average error. 

The integration nets were trained in the blobs chosen by the level-2 
component net. The inputs to the level-1 integration net were pixel values from 
five-by-five windows in the output images of three networks: the x level-0 net, the 
+ level-0 net with lower error, and the best-performing level-1 component net. 
Thus there are seventy-five inputs. Fifty nets with no hidden units were trained, 
each starting from a different randomly-chosen weight vector. Twenty-four of these 
learned to respond to the upper-right corner (as did the level-1 component network 
which provides input), eleven responded to x patterns, nine responded to + 
patterns, two learned to correctly detect the positives and reject the potential false 
positives, and four had strange responses that didn't easily fit these categories. 

The inputs to the level-2 integration nets were pixel values from five-by-five 
windows in the output images of three networks: the x level-0 net, the + level-0 net 
with lower error, and the best-performing level-2 component net. Thus there are 75 
inputs. Ten nets with no hidden units were trained, and all have very low errors. 
All have strong responses at the desired objects. On test data, the threshold can be set 
so that six of the ten detect all of the desired objects and no false positives. Of the 
remaining four, in order to detect all of the desired patterns, the threshold had to be 
set to give between one and three false-positives. 

These results tell us several things, in spite of the extreme simplicity of the 
problem: 

1. Training several nets from different randomly chosen weight vectors can be an 
effective, if crude, way to generate network detectors for different features. 

2. Networks can learn to detect unique features which nevertheless do not 
improve the pattern tree's ability to detect the objects of interest. At the second 
level, for example, different nets learned different corners, or parts of edges near 
corners, yet any one of the networks already achieved the best available detection 
performance at level 2. The others added nothing. This would not be the case for 
problems with occlusion. It may also happen that features which do not improve 
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detection performance have sub-features which do improve detection 
performance. 

3. Many nets may learn useless features even when useful features are present. 
This happened with the level-0 component nets. 

4. Competitive learning which forces networks to go high at different positions 
in the image may fail to force the nets to detect different features. With the five- 
by-five input windows, different nets could detect the same feature with their 
input windows centered on different points. This would not be the case if the 
detection of the feature required input from the entire window. 

5. Given detections of features at one resolution, it may not be clear where the 
net at the next higher resolution should be trained. For entire objects, we can 
probably measure the mean or maximum extent of the objects around the pixels 
at which the network's output went high, and use similar regions around both 
true and false positives. However, to train nets to detect sub-features of lower- 
resolution features, there may not be a well-defined way to choose a region for 
training. 
6. Cross-validation error does not necessarily distinguish between useful and 
useless features. The deficiencies of our objective function are making 
themselves felt here. 
7. The outputs of the component networks make very good features for the 
integration networks, as was hoped. 

The difficulties foreseen before trying this toy problem were mainly in 
training networks to each detect one feature, and to get each to detect a different 
feature. The first of these did not seem to be a problem with the current toy problem, 
but the desired objects of this problem have features which are present in all 
positive examples so that one feature sufficed to detect any positive. We have tried 
to detect different features by simply training from many different random restarts. 
This is not too expensive if the networks are simple, e.g., if they have no hidden 
units. Unfortunately, the experience with the level-0 component network (point 3, 
above) shows that features can be missed this way if too few restarts are tried. 

We have begun investigating another artificial problem with greater 
variability in the objects' appearance, to see how the experiences above change with 
the added complexity. The objects in the current toy problem are very rigidly 
defined. Varying the brightness levels, in particular allowing them to be either 
brighter or darker than the surroundings will make the problem significantly 
harder. In addition, the desired objects in the new artificial problem have features 
which are not always present, in order to investigate potential problems with a 
single network learning multiple features. 

Training neural networks with uncertain target positions 

We developed an artificial problem to demonstrate the training algorithm we 
have developed for objects with uncertain positions. The objective function we 
used is the second of the two discussed in the last quarterly report. At the minimum 
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of this function, the net is maximally likely on the training data to produce at least 
one positive response within each positive region, and negative responses at all 
locations outside of the positive regions.  The error function is 

E = -   X   logd-y(f(x)))- 
xeNegatives 

I   log 
/ePositives 

l-Y[a-y(f(x))) 
(EQ1) 

in which f(x) is the input feature vector at position x, and y(f) is the network 
output given f. 

The artificial problem is shown in Figure 3. Each of the objects to be found is 
a single pixel with a value of one. For the sake of clarity, they are arranged in a ten- 
by-ten grid. The network has no information about position, so it cannot use this 
fact to solve the problem. Each background pixel has a value of one-half or zero 
randomly assigned with equal probability (Fig. 3a). The desired outputs were 
specified incorrectly (most of the time) by placing the desired output at a randomly- 
chosen position within a three-by-three-pixel square centered around the correct 
position (Fig. 3b). A "network" consisting of a single neuron was used to search for 
the objects. The inputs to the neuron are the nine pixel values in a three-by-three 
window. 

FIGURE 3. Example Problem, a) Input image, b) Mostly incorrect desired outputs, c) and d) Outputs of 
network trained with conventional methods (see text for details), e) Output of network trained with 
uncertain-position objective function, a) and b) are the training image, while c), d), and e) are outputs 
for a test image. The training and test images have objects in the same locations, but different 
background noise. 

Figure 3c is the output of a network trained conventionally with the cross- 
entropy error function, assuming the positions in the desired output were correct. 
The pixel values of this image have been scaled, since the neuron produced a 
maximum output of only about 0.17. 
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Figure 3d is the output of a neuron trained conventionally with the cross- 
entropy error and a desired output which is one everywhere in three-by-three 
windows around the (possibly) incorrectly-specified object positions. This, too, has 
been scaled, but its maximum output was about 0.62. 

Figure 3e is the output of a neuron trained using the uncertain-position 
objective function, in which case the net was trained to be likely to produce a 
detection within a three-by-three window around each of the incorrectly specified 
positions.  This image has not been scaled. 

As is apparent from Figure 3, the uncertain-position objective function 
produces superior results. It should be noted that a more complex net trained with a 
conventional method might work better than the conventionally-trained single- 
neuron networks used here. It would, of course, be more difficult to train. It is still 
true that a single neuron is capable of performing the task, but the usual training 
methods cannot teach it to do so. 

Statistical Analysis of Mammography Data 

Previously we have reported using our Hierarchical Neural Network (HNN) 
architecture for the problem of detecting microcalcifications in digital 
mammograms. We compared three networks architectures, showing that the HNN 
had significantly better accuracy than non-hierarchical architectures. Recently, we 
have compared the HNN with other detection/classification techniques, for 
example standard linear discriminants. In addition, we have begun to investigate 
different learning algorithms (e.g. Levenberg-Marquardt). 

Comparison with a linear discriminant 

We computed a linear discriminant for the microcalcification problem and 
compared its accuracy, through ROC analysis, to our HNN architecture and the non- 
hierarchical neural network architectures we have considered previously. Three 
different linear discriminant architectures were considered. One linear 
discriminant operated on features extracted from low resolution (LD, level 3) and 
another operated on features at high resolution (LD, level 3). A third discriminant 
was constructed by having the output of the low resolution (LD level 3) detector 
serve as additional input to the LD level 2 detector. This mimicked the hierarchical 
structure of the HNN. The table below summarizes the results, comparing the 
sensitivity of the two non-hierarchical neural networks, the three linear 
discriminants, and the HNN (sensitivity, Ag/ is defined as the area under the ROC 
curve; 

Detector Sensitivity (Ag) 
HNN 0.834 
NN (level 3) 0.652 
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NN (level 2 & 0.710 
3) 
LD (level 3) 0.767 
LD (level 2) 0.778 
HLD 0.788 

We first note that the HNN detector has the highest sensitivity of the six 
detectors. Secondly, the linear discriminant detectors all have higher sensitivities 
than the non-hierarchical neural network detectors, implying the increased accuracy 
of the HNN system must be attributed to its architecture, not to the fact that it 
simply uses neural networks. Though the hierarchical linear discriminant has the 
highest sensitivity amount the 3 LD detectors, its sensitivity is still far below the 
HNN. This implies that the key feature accounting for the high sensitivity of the 
HNN is that information is hierarchically propagated from the hidden units. 

Learning  algorithms 

We have begun to look at variations in the learning algorithm to see if the 
accuracy of the HNN detector is dependent upon our use of cross-entropy as an error 
function or sequential quadratic programming as an optimization method. Initial 
simulations suggest that other error functions and optimization routines would 
also suffice. In particular, minimizing mean squared error using the Levenberg- 
Marquardt (LM) optimization method seems to promise results similar to SQP. 
However, we note that critical to the learning algorithm is a regularization term 
(e.g. weight decay). For instance, we have found that LM offers excellent results on 
the training set put very poor generalization on the test set. We are currently 
incorporating a regularization term into our mean square error minimization using 
LM and doing further testing. 

Submission to Neural Networks. Special Issue on ATR 

We submitted a paper entitled "Integrating Neural Networks with Image 
Pyramids to Learn Target Context" to the Special ATR issue of Neural Networks 

Submission to International Conference on Image Processing CICIP95) 

We submitted the paper "A Hierarchical Neural Network Architecture that 
Learns Target Context: Applications to Digital Mammography" to ICIP95. 

ICIP Paper submitted 

A summary of a presentation titled "Training neural networks with 
uncertain object positions" was submitted for the 1995 International Conference on 
Image Processing. 

NTPS Paper Submitted 

A paper entitled "Coarse-to-Fine Image Search Using Neural Networks" was 
submitted for inclusion in Advances in Neural Information Processing Systems 7, 
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the proceedings of the Neural Information Processing Systems Conference    in 
Denver, CO, on November 30. 

Software delivered to the Joint Warfare Analysis Center 

At the request of the Joint Warfare Analysis Center, we delivered software to 
train a hybrid pyramid/neural network system to perform coarse-to-fine image 
search, including the possibility of exploiting context. 

Mercury Computers 

We have initiated talks with Mercury Computers regarding possible 
commercial applications of our Neural Network/Pyramid Software to problems in 
ATR and biomedical imaging. Mercury is a manufacturer of high-end parallel 
computer hardware, supplying platforms for both ATR and biomedical image 
processing. A potential partnership might include porting out neural 
network/pyramid algorithms onto their computer hardware. 

Biomedical Applications (MRI) 

We have been collaborating with Dr. Mitch Schnall, Director of MRI at the 
Hospital of the University of Pennsylvania. Dr. Schnall is a world leader in high 
resolution (180 micron) MRI and strongly advocates the use of these techniques for 
breast cancer screening, believing that the high resolution can pick up structural 
features absent in mammograms. However, the techniques he has been developing 
are very new, and it is unclear to him what features/characteristic/correlations in 
the high resolution MRI are cues to cancer. He believes our image 
processing/neural net techniques can serve as tools for helping him analyze this 
imagery. 

Summary of Substantive Information Derived from Special Events: 

None. 

Problems Encountered and/or Anticipated: 
None 

Action Required by the Government: 

The most recently scheduled funding increment has not occurred. 

Financial Status 

1. Amount currently provided on contract: $225,740 

2. Expenditures and commitments to date: $319,762 

3. Funds required to complete work: $451,130 
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